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Abstract 

A derivation is given of the set of triply periodic 
minimal surfaces of monoclinic symmetry and higher 
that fall within the regular class (including those 
containing self-intersections). The Gauss maps, 
Weierstrass parametrizations and asymmetric units 
of each surface are included. Triclinic relatives of 
monoclinic surfaces are also discussed. Some minimal 
surfaces that lack translational order but exhibit 
orientational symmetry also naturally appear within 
this derivation. 

Introduction 

In the first paper in this series (Fogden & Hyde, 1992) 
we have established necessary conditions for the 
existence of infinite (triply) periodic minimal surfaces 
(IPMS) within the regular class. These constraints 
are imposed on the Weierstrass functions [(14) or the 
modified form (15) of the previous paper, here 
denoted (I14) and (I15), respectively*], which lead 
to the IPMS via the Weierstrass representation. We 
now derive the IPMS in the regular class that are 
consistent with these constraints. 

1. Global Riemann surface structure 

( a ) Plane lines of curvature and linear asymptotes 

The set of branch-point distributions listed in Table 
I2 (Fogden & Hyde, 1992) represents all IPMS candi- 
dates generated from Schwarz triangle tilings. The 
assessment of each candidate involves investigation 
of the Riemann surface covering of the unit sphere 
corresponding to the branch-point distribution and, 
specifically, the continuous subregions that tessellate 
the Riemann surface. As observed in the preceding 
study (Fogden & Hyde, 1992) such a subregion must 
comprise a union of the underlying Schwarz triangles 
and is thus termed a (generalized) geodesic polygon. 
If such a polygon exists for which the bounding 
(geodesic) edges may be consistently identified as 
images of plane lines of curvature or linear 
asymptotes then the distribution gives rise to an 

* The numeral I indicates an equation or table of  the first paper 
in this series (Fogden & Hyde, 1992). 
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IPMS, with the smallest such polygon representing 
the Gauss-map image of the IPMS Fliichenstiick. 
From this Gauss-map image the reconstruction of the 
Fliichenstiick is straightforward. Crystallographic 
considerations of the Fliichenstiick, with reference to 
its bounding cell, then determine whether continu- 
ation of the surface element yields a true IPMS or 
generates self-intersections. 

Existence of an IPMS for a particular branch-point 
distribution is thus related to the existence of a 
globally consistent network of image segments of 
plane lines of curvature and /o r  linear asymptotes on 
the underlying Schwarz tiling of the Riemann surface. 
These special arcs are the Schwarz triangle edges for 
which the Weierstrass function satisfies the necessary 
conditions derived in the previous paper (Fogden 
& Hyde, 1992). Global consistency then requires 
the compatibil i ty of the Schwarz tiling and the 
Weierstrass function in simultaneously reconciling 
these necessary conditions on each branch of 
the Riemann surface. We now formulate these 
requirements. 

Consider a general surface-normal vector imaged 
at infinity in the complex plane and a ray segment 
emanating at an angle ~0 from a point lying over it 
on one of the s sheets of the Riemann surface. This 
ray corresponds to a plane line of curvature or linear 
asymptote provided the condition 

exp(- i4~)R[exp(- i2~o)d~]=+R(to)  (1) 

derived from (I23) is satisfied for that branch of the 
Weierstrass function R(to). For the regular class of 
IPMS the number of sheets s -- l.c.m. {b~+ 1}~'= ~ is the 
least common multiple (l.c.m.) of the local Gauss- 
map degrees at the branch points, with the s branches 
of the Weierstrass function defined by exp (i~bp)R 
such that ~bp = (2zr/s)p, p = 0 , . . . ,  s -  1, where R is 
given by the form (I14) or (I15) subject to the con- 
straint (I10). Recall that , 'with ( b + l )  denoting the 
local Gauss-map degree at this general surface- 
normal vector, on the Riemann surface above the 
corresponding image point the s sheets are pinned 
in groups of (b  + 1) at the s / (b  + 1) such branch points 
of order b ->0. We label these s / (b+ 1) branch points 
with the index r and the s sheets with the index 
p introduced above. Then the ( b +  l) sheets pinned 
at the rth branch point are identified with the 
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( b + l )  values of p giving remainder r on division 
by s/(b+l).  Thus the local branch-point structure 
partitions the set of s values of p into equivalence 
classes modulo s/(b+ 1) of (b+  1) points, 

( r )=  {p" r = p  mod s/(b+ 1)} 

={[s/(b+l)]m+r, m = 0 , . . . ,  b}, 

r = O , . . . , s / ( b + l ) - l .  (2) 

The corresponding ( b + l )  Weierstrass function 
values exp (i~p)R in the vicinity of the rth branch 
point are then given by exp(i~br)exp[i2mrr/ 
(b+  1)]R. In this way each sheet is locally assigned 
an integer pair r and m such that r labels the branch 
point and m distinguishes the ( b + l )  sheets pinned 
there. 

Substituting equations (I14) or (I15) subject to the 
constraint (I10), for the range of angles 0 -<~r<  
2 r r ( b + l )  tracing the ( b + l )  sheets of the Riemann 
surface pinned at the rth branch point, the corre- 
sponding function exp (id/r)R satisfies (1) only if the 
necessary branch-point symmetry condition 

{ e x p  (iqgr)toi} = {exp (iq~r)tOi}, b i constant (3) 

is supplemented by the condition 

exp{i2[q~r(b+2)/(b+l)+Or]}=+l. (4) 

As expected, this pair of equations reverts to (I27)- 
(I28) for the case r = 0 considered in the analysis of 
the previous paper. So the spectrum of images of 
plane lines of curvature and linear asymptotes on the 
Riemann surface emanating from the rth branch point 
are the geodesic arcs at the angles in the set 

q~r = [(b + 1)/(b + 2)][mrrr/2-(2rr/s)r], 

m r = 0 , . . . , 4 ( b + 2 ) - l ,  (5) 

about which the branch-point distribution is sym- 
metric (where the parity of rnr distinguishes the two 
types of curve). 

With the branch-point distribution generated from 
a single underlying tile, the set of geodesic arcs about 
which this distribution is symmetric is precisely the 
set of tile edges over which the branch points are 
propagated by reflection (as opposed to composition 
of this operation with reflection in any existing inter- 
nal symmetry axes of the tile). Thus the network of 
images of plane lines of curvature and linear 
asymptotes is generated by the subset of these tile 
edges for which the angles subtended are consistent 
with those permitted by (5). We now determine this 
subset. 

Suppose that the general surface-normal vector 
considered above is imaged at a point on a tile boun- 
dary that is a reflection axis of the distribution. Let 
ATr denote the smallest angle between reflection axes 
at this point. If the point lies on an edge then A~r = ~r, 
otherwise the point is situated at a vertex and A~- is 

the vertex angle of the tile (or twice this value if the 
other tile edge meeting there is not a reflection axis). 
Then at the rth of the s/(b + 1) branch points of order 
b lying over this point on the Riemann surface, the 
family of images of plane lines of curvature or linear 
asymptotes meeting there correspond to the subset of 
angles ~0r in (5) that are multiples of this underlying 
tiling angle h~r, i.e. ~Or = nrh~r. From (5) the permissible 
set of integer multiples nr must satisfy 

nrA=[(b+l)/(b+2)](mJ2-2r/s).  (6) 

Defining the greatest common divisor 

G = g.c.d.[(1/A ) (b+ 1), 2(b + 2)] 

(g .c .d . [ (1/A) ,2(b+2)]  if b is even 

- (2g .c .d . [ (1 /A) , (b+2)] -  if b i s o d d '  (7) 

(6) possess integral solutions nr and mr provided r 
is an element of the set 

S = { r = O , . . . , s / ( b + l ) - l :  

s divides (4/A)(b+l)r/G} (8) 

{of which r = 0  [mod s/(b+ 1)] is one such member}. 
Hence only those of the s/(b+l)  branch points 
(labelled with the index r) for which r is contained 
in this set S possess images of plane lines of curvature 
or linear asymptotes meeting there. For those that do, 
the general solution of (6) is then 

nr = [ ( 1 / A ) ( b +  1 ) / G ] q - [ ( 4 / A ) ( b +  1)/sG]rn °, 

mr = [2(b + 2 ) / G ] q - [ ( 4 / A  )(b+ 1)/sG]rm ° 
(q c Z), (9) 

where (n °, m °) is any particular integral solution of 
the equation 

2(b+2)n°-(1/A)(b+l)m°=G. (10) 

So the family of such curves emanating from the rth 
branch point (if r is an element of S) on the (b+  1) 
sheets pinned there is given by the family of angles 
~r= n~A~ modulo 2~-(b+ 1), generated by 2G con- 
secutive values of the integer q in (9). 

Equations (6)-(10) specify the local structure 
required of the images of plane lines of curvature and 
linear asymptotes on the Riemann surface above a 
particular point on a tile reflection boundary, com- 
mensurate with the boundary angle A~ subtended 
there. The underlying tiling then ensures that the 
required local structure may be simultaneously 
satisfied at all such boundary points, for each of the 
solutions of equation (I37) listed in Table I2. Hence 
in each case there exists a consistent network of these 
image arcs on the Riemann surface (such that points 
related by symmetry possess local structures related 
by the same symmetry). This implies the existence of 
a generating circuit, from which the entire network 
may be obtained via symmetry operations of the 
branch-point distribution. 
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Existence of a corresponding IPMS demands that 
the smallest.generating circuit bounds a region com- 
prising an equivalent fraction of the Riemann surface, 
which is then identified with the Gauss-map image 
of the Fliichenstiick. Such an identification is possible 
if this circuit is simply connected on the Riemann 
surface. Hence the determination of those members 
of the solution set in Table I2 giving rise to IPMS 
involves application of this criterion to the network 
of images of plane lines of curvature and linear 
asymptotes thus constructed. For those that do, this 
direct method immediately yields the Fliichenstiick of 
the IPMS. 

( b ) Rotation and roto-inversion symmetries 

Having fully specified the plane line of curvature 
and linear asymptote structure of the surfaces derived 
from solutions in Table I2, it remains to classify the 
rotation and roto-inversion symmetries of those sur- 
faces satisfying the closure criterion derived above. 

Consider first pure rotational symmetry. Under this 
symmetry operation the surface is mapped onto itself 
under clockwise rotation through an angle q~' about 
the z axis if the condition 

( e x p [ - i q ~ ' ] t o ) = - s  ~,' cos q~' 0 y (to), 

o 1 / \ z /  
(11) 

equivalent to (I30), is satisfied. On substitution of the 
representation (I 1 ) this geometrical condition reduces 
to the functional equation 

exp[-i2q~']R(exp[-i~o']to)= R(to). (12) 

For the regular class of IPMS the solution of this 
equation yields the criteria (I31)-(I33) governing the 
perpendicular rotational symmetry of the surface 
about a particular point of order b->0 that, with 
respect to the chosen orientation, has a vertical nor- 
mal vector imaged at infinity in the closed complex 
plane. Further, if this z-axis direction coincides with 
that of a labyrinth axis of the minimal surface then 
(12) gives the rotational-symmetry angle of the sur- 
face about this line. In general, for the Weierstrass 
functional form (I15) [in conjunction with the con- 
straint (I10)] to obey this equation, the necessary 
condition (I31 ) must be satisfied simultaneously with 
the equation 

exp{ i[q~ ' (b+2) / (b+l)+A+r]}=l ,  (13) 

[where, as previously, qJr=(2~/s)r, r = 0 ,  . . . ,  
s / (b+ 1 ) -  1] or equivalently 

¢ '=[(b+l) / (b+2)][2m' , t r - (27r / s )Ar]  ( m ' c  Z). 

(14) 

The factor exp (iA+r) is introduced here to account 

for the possibility that, in passing from to to 
exp ( -  i~o')to, the corresponding Weierstrass-function 
value passes (continuously) on the Riemann surface 
from a sheet pinned at the rth branch point of order 
b over the point at infinity to a sheet pinned at the 
r'th such branch point (where a r =  r ' - r ) .  For the 
case of perpendicular rotation about the flat point of 
order b under consideration, a r  = 0, hence the pre- 
vious result (I33) is recovered and the basic rota- 
tional-symmetry angle ~0 ' / (b+l )  on the surface is 
[1/(b+2)]27r.  On the other hand, traversal of the 
Riemann surface induced by rotation about the 
labyrinth axis parallel to this flat-point normal vector 
through an angle q~' satisfying (I31) is inaccessible 
with respect to the local branch-point structure above 
this normal-vector image. Hence in this case ~lr ~ 0 ~ 
and the off-surface angle of rotational symmetry in 
real space is the minimum value of ~0' in (14) con- 
sistent with the symmetry angle of the branch-point 
distribution and the known Ar value. 

We now address the roto-inversions. Since the rep- 
resentation (I1) is specific to the arbitrary choice of 
normal-vector orientation applied to the minimal sur- 
face (i.e. to the choice of colouring of the two sides), 
the distinction must be made between off-surface and 
on-surface roto-inversion symmetries. Consider first 
a general off-surface roto-inversion. The surface is 
imaged to itself on composition of a clockwise rota- 
tion of q~" about the z axis with inversion in the origin 
provided 

= -  -sinq~" cos~"  0 y (to), (15) 

0 0 1 / \ z /  

which reduces to 

(1/to4) exp [-i2q~"]R(-exp [-i~o"]/d~)= R(to). (16) 

This relation is in turn satisfied for an IPMS in the 
regular class if the branch-point distribution 
possesses this symmetry, that is, the polar branch 
points (lying above the origin and the point at infinity 
in the complex plane) have equal order, i.e. bl = b, = 
b-> 0, with the finite nonzero branch points having 
the property 

{-exp [-iq~"]/oSi} = {to,}, bi constant, (17) 

and, further, if 

n - - I  

exp[i(~r-q~")(b+Z)/(b+ l)]= H to~,/(b÷,, (18) 
i = 2  

Thus in general the angle of roto-inversion symmetry 
of the surface about a labyrinth axis coinciding with 
the z axis and inversion point situated at the origin 
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is the minimal-value solution q~" of (18), if it exists. 
For the special case in which ~o"= 7r the twofold 
roto-inversion reduces to on-surface mirror symmetry 
in the plane z = 0, with the subsequent condition 

n - I  

1-I tob,/(b+l)= 1, (19) 
i = 2  

which recalls the previous criterion for a plane line 
of curvature, derived from the positive root of (I25) 
on setting n~ = n2 = 0. 

The criterion for on-surface symmetry at a surface 
point of order b with vertical normal vector under 
rotation of ~0'" about this normal line (the z axis) and 
inversion in the point (imaged at the origin) is 
obtained by negating the right-hand sides of (11)- 
(13), in conjunction with the necessary condition 
(131). This yields the condition 

e x p { i [ q ~ ' " ( b + Z ) / ( b + l ) + A q J r ] } = - l ,  (20) 

where now, as distinct from the on-surface rotational 
symmetry case, Ar ~ 0 and consequently b > 0. Hence 
on-surface roto-inversion is exhibited at this (flat) 
point if (20) possesses a solution consistent with 
branch-point structure; the basic rotation angle 
~0"'/(b + 1) then corresponding to the minimal such 
value. Note in particular that if exp (iA~br) = -1  then 
the composite symmetry decouples into rotational 
symmetry at angle ~0' and inversion symmetry. 

Finally, consider the orientation-preserving com- 
posite symmetry of twofold rotation about the y axis 
followed by clockwise rotation of ~ about the z axis, 
for which the condition is 

i ) ( - e x p  [-i tp]/to) 

sin  

= /  Sioq~ cos q~ ? 0 1 (to)" (21) 

Via the representation (I 1) the associated Weierstrass 
functional equation is 

(1/ to4)  e x p [ - i 2 c p ] R ( - e x p [ - i t p ] / t o ) = R ( t o ) .  (22) 

The regular-class functional form is a solution of (22) 
provided bl = b, = b->0 and the remaining branch 
points satisfy 

{-exp [-iq~]/to~} = {toi}, bi constant, (23) 

subject to 

n - - I  

e x p [ i ( T r - q ~ ) ( b + Z ) / ( b + l ) ] =  1-1 to~,/(b,+,). (24) 
i = 2  

Note that this latter constraint is identical to (18), 
the analogous constraint for off-surface rotation- 
inversion symmetry. 

2. Regular-class solutions for the Schwarz triangles 

The analytical apparatus assembled in the first section 
facilitates the 'reconstruction" of a minimal surface 
in the regular class from its corresponding branch- 
point distribution. We now apply this procedure to 
the branch-point sets listed in Table I2, thus yielding 
explicitly the regular IPMS related to Schwarz 
triangle tilings. Recall that each such set containing 
branch points on triangle edges and/or  faces gives 
rise to a number of distribution types (that is, sym- 
metry-distinct configuration classes). 

Branch-point distributions that are consistent with 
the closure criterion stated in the preceding section 
are represented, with reference to their underlying 
Schwarz tiling, in Figs. l (a) -17(a) .  The numbering 
of the figures follows the grouping of the solution 
sets in Table 12, ordered with decreasing tiling sym- 
metry from Schwarz case 4 solutions to those of 
Schwarz case l, n = 2. For example, in the Schwarz 
case 1, n --3 group, the solution set {0, 4, 4} is found 
to be incompatible with the closure criterion, while 
the set {{0,0, 1},{1}, ~} admits three possibilities 
satisfying this requirement - given in Figs. l l ( a ) ,  
12(a) and 13(a). In the latter two cases the branch 
points are propagated by reflection over all three 
edges, with the pair distinguished by the choice of 
two symmetrically different edges to which the branch 
point may be assigned. In Fig. l l ( a ) ,  however, con- 
tinuation across the unit circle is defined by the com- 
position of reflections in the unit circle and the ray 
bisecting the triangle. 

The corresponding Weierstrass functions for the 
branch-point distributions are obtained by substitu- 
tion of the sets of branch-point sites {to~} 7= 1, together 
with their orders, into the relevant functional form 
(I14) or (115). The sets {to~} ~'= 1 are, in turn, determined 
as follows. 

The two solutions arising from Schwarz case 4, 
given in Figs. l (a)  and 2(a) (for which the only 
possible symmetry operations defining branch-point 
propagation over each tile boundary are edge reflec- 
tions), lead to branch points at the zr/3 and ~-/4 
vertices of the tessellation, situated at the set of eight 
and six points {[(31/2+ 1)/2 I/2] exp ( iMTr/2) :  M ~ Z} 
and {0, oo, exp(iTr/4) exp ( i M z r / 2 ) :  M ~ Z} respec- 
tively (for this orientation). 

The remaining solutions pertain to Schwarz case 
1, for which a general point to, interior to a tile with 
polar angle zr /n ,  possesses 4n images in the tessel- 
lated complex plane. If the branch points are propa- 
gated by edge reflection then these images are the 
group generated by the three reflection operations 
to ~ ~, to ~ e x p ( i 2 "tr / n ) ~, to ~ l / ~,  

(O5, exp ( i2~' /n)o5,  1/o5) 

= {{to, d~, l / to ,  1/d~} e x p  ( i 2 M ~ / n ) :  M~Z}.  

The degenerate case in which a generator is rendered 
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m 

a ( b )  

(a) 

Fig. 1. The D and P surfaces. 

2 

2 a 

(b) 

(a) 

Fig. 2. The I-WP and Stessman surfaces. 

/ /  
/ 

(a) 

Fig. 3. The self-adjoint special case of the CLP family (see Fig. 9). 

Figs. 1-20. The 'regular' minimal surfaces derived here. The figures 
(a) give the branch-point distribution in the complex plane, 
relative to its stereographically projected spherical tessellation. 
Filled circles indicate branch points, whose orders are given by 
the adjacent numeral. Larger open circles centred on the origin 
denote a branch point at the point at infinity. The shaded region 
is the projected Gauss-map image of the Fliichenstiick, corre- 
sponding to the Weierstrass function in Table 1. The labels 'p' 
and ' t"  indicate images of Fliichenstiick boundaries that are plane 
lines of  curvature and linear asymptotes, respectively. The 
geometry in 113 of the Fliichenstiick is illustrated by the solid 
lines in figures (b), with the adjoint Fliichenstiick given in broken 
lines, and the symbolic names of both are given in each caption 
(in this order), unless otherwise stated. (The notation conven- 
tions are detailed in § 2.) Each of the surfaces is described in 
the text and the relevant crystallographic information is summa- 
rized in Table 2. 

an identity gives a set of 2n edge points. Thus the 
image set of touR [respectively exp(iTr/n)R] is 
{{A, 1/,4}exp(i2M1r/n): M e Z } ,  where A e R  
[respectively exp (i,a'/n)R], while ]tol = 1 yields the 
set {{exp (iO), exp (-i0)} exp (i2MTr/n): M e Z}, 
where 0 -  < 0<2~r. Double degeneracies in turn pro- 
duce the set of n vertices at exp(i2MTr/n) or 
exp [ i (2M + 1) rr/n]. On the other hand, if unit-circle 
reflection is replaced by composition of this operation 
with reflection in the internal-symmetry axis arg to = 
7r/2n of the tile then the 4n generic images are 

(o3, exp (iTr/n)(1/to)) 

= {{to, o3, (1/to) exp (iTr/n), 

(1/o3) exp(iTr/n)}exp(i2MTr/n)" M eZ}. 

In this case there exists only two degenerate cases, 
both consisting of 2n points. If to e R  then the 
above set reduces to {{A, ( I /A)  exp (iTr/n)} 
exp (i2MTr/n): M e Z } ,  while to =exp (iTr/n)(1/to) 
generates the special points exp [ i ( 2 M +  1)Tr/2n]. 

These cases exhaust the image sets of all types of 
branch-point positions occurring in the solutions 
under all possible edge-propagation operations. The 
Weierstrass functions associated with the branch- 
point distributions in Figs. l (a ) -17(a)  are trivially 
calculated from the above and are listed in the corre- 
spondingly numbered rows 1-17 of Table 1. 

In each case the Riemann surface of the Weierstrass 
function is visualized as s superposed copies of the 
single sheet illustrated in Figs. l (a) -17(a) ,  pinned at 
the branch points according to the conventions 
described above. The Riemann surface is generated 
by repeated edge reflection of the geodesic polygon 
shaded in the figure, representing the smallest such 
unit bounded by images of plane lines of curvature 
(p) and/or  linear asymptotes (•). The tessellation 
gives the complete family of these special surface- 
curve images on the Riemann surface, specified by 
(6)-(10). It is geometrically apparent from the 
diagram that each of these cases satisfies the closure 
criterion, since this network of images clearly defines 
a consistent geodesic polygon. 

Since the shaded region is the projected Gauss-map 
image of the Fliichenstiick, this information is 
sufficient, in conjunction with the symmetry analysis 
in § l(b) above, to construct its form in R 3. The plane 
lines of curvature and linear asymptotes defining the 
Fliichenstiicke are illustrated relative to their bound- 
ing cells for these cases by the solid-line curves in 
the corresponding figures marked (b). The symmetry 
of these examples ensures that these geodesic arcs 
form a closed circuit about the faces and/or  edges of 
the bounding cell, in which case the form of the 
resulting Hiichenstiick is obvious. In other examples 
(treated in § 4 below), these arcs do not close up, 
however the form of the resulting Fliichenstiick can 
be deduced from the Gauss map. 
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Table 1. Weierstrass functions corresponding to the Fliichenstiicke with Gauss-map image given in 
Figs. l ( a ) -20 (a )  

F i g u r e  
no .  

1 

2 

3 
4 

5 

6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
17 

18-20 

W e i e r s t r a s s  f u n c t i o n  R ( w )  

(to 8 -  14wa+ I) - I /2  

[to(to4 + 1)] -2/3 
(to8+ 1) - I /2  
[to(to6+ 1)] -1/2 
(tO6+ I) -.2/3 
t0-3/4(Oj5 + 1)-1/2 
to-1/2(t04+ 1) -3/4 
[ t o 8 -  ( A a +  1/A4)to4 + 1]-1/2: 0 <  A < l~Aa+ I/A4> 2 
(to 8 - 2 cos 40w4+ I ) - t / 2 : 0  </9 < ~'/4:=> - 2  < 2 cos 40 < 2 
¢O "7/8(¢.O3+ 1) -3/4 

{tO[t06 + ( - A 3 +  l /A3)to  3 -1]}-1 /2 :  0 <  A <  I = ~ - A 3  + I / A S >  0 
{to[t06- (A3 + 1/A3)t03 + 1]}-1/2: 0 <  A <  I =:)A3 + I / A 3 >  2 
[w(w 6 - 2 cos 30to 3 + 1 )]-  1/2:0 </9 < 7r/3 ::~ - 2  < 2 cos 3 O < 2 
{to 8 - [(m 2 + 1 /A  2 ) - ( B 2 + ! /B2)] ta  6 - [( A 2 + 1/A2)( B 2 + 1 /B  2) - 2]to 4 - [ (A 2 + 1 /A  2) - ( B 2 + I /B2)] to  2 + 1 }-1/2:0 < A, B < 1 

[w 8-  2(cos 201 + cos 202)to6 + 2(2 cos 201 cos 202 + 1 )w 4 -  2(cos 201 + cos 202)602+ 1 ] - i / 2 : 0  < 01 < 02 < -n" 
[~o~_ 2(1 + l/iw02i2) Re (Wo)~O2 6 + {4(l/la,~12)[Re (wg)]2 + i,,,~,12 + 1/iwzl2}toa_ 2(1 + l/iw~l ~) Re (too)w2 2 + i ] - , /2 .  . too E C 

~o-i/2(toa _ 2 cos 2/9~o 2 + 1 ) -3 /4 :0  < t9 < 7r/2=~,-2 < 2 cos 20 < 2 

(ws-t,w6+t2w'-?,w2+l) '/2 w h e r e t , - -  ~ z~, ,2 = ~ z~z~ 
i=1 i,/~l 

i<i 

2 2 2 2 
ZI Z2 Z3 Z4 

18 exp (i201 ) exp (i202) exp (i203) exp (i204) = exp [ - i2 (01  + 02+ 03) ] 
19 r 2 exp ( i20) ( l / r  2) exp ( i20) exp (i203) exp (i20a) = exp [ - i 2 ( 2 0  + 03) ] 

20 r~ exp (i20~) (1/r~) exp ( i20,)  r~ exp (i202) = r 2 exp ( - i 201 )  (1/r~) exp (i202) = (1/r~) exp ( - i 2 0 , )  

The 0 = 7r/2 adjoint Fl~ichenstiick of the Bonnet 
family (obtained by introducing a multiplicative fac- 
tor of i to the Weierstrass functions) is illustrated in 
each case by the broken-line curves in these figures. 
It is derived from the original Gauss-map image by 
simply interchanging the plane line of curvature and 
linear asymptote labelling. 

The Fliichenstiick is not given in cases (such as Fig. 
3 a) where the branch-point distribution exhibits extra 
symmetries with respect to a generic distribution in 
that family (given in Fig. 9a), but for which the 
surface possesses no additional real-space sym- 
metries. Further, the adjoint Fliichenstiick is not given 
in cases for which it is either identical to the original 
surface on reorientation, i.e. 'self-adjoint' (such as 
Fig. 17b), or, more generally, defines a continuous 

family of surfaces identical to that of the original (for 
example, Fig. 9b). 

For the special members O = 0 and 0 = 17/2 of the 
Bonnet associate family, the existence of a particular 
IPMS implies the existence of lower-symmetry IPMS 
families derived by crystallographic distortion. The 
number of derivative-surface families of reduced sym- 
metry is given by the number of possible distinct 
distortions of the original surface compatible with 
this symmetry. Each distortion represents an addi- 
tional degree of freedom in the dimensions of the 
bounding cell corresponding to the introduction of a 
variable real parameter to the existing branch-point 
distribution and hence to the Weierstrass function. 
This study is limited to the regular class of IPMS, 
thus relatives of reduced symmetry of some listed 

(a) 

Fig. 4. The self-adjoint special case of the hCLP family (see 
Fig .  13). 

~ . , , :  

i~,'-~: -.~.~ . .~. 

~ Q i ............ J~J  

(b) 

(a) 

Fig. 5. The hll and hll' surfaces. 
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Table 2. Summary of information for the minimal surfaces of Figs. 1-20 

The grouping of the cases indicates the sets of IPMS related by crystallographic distortion (with the third group mPCLP/mDCLP 
common to both of the first two sets). The space-group symmetry is not presented for the self-intersecting examples. 

M i n i m a l  s u r f a c e /  B i c o n t i n u o u s  T a b l e  1 F i g u r e  
a d j o i n t  s u r f a c e *  S p a c e  g r o u p  G e n u s t  ( i n t e r s e c t i o n - f r e e )  e n t r y  no.  

D / P  P n 3 m  - F d 3 m / l m 3 m  - Pm3m 3 x/ 1 l ( a ) ,  (b) 
rPD R 3 m - R 3 m  ( c '=  2c) 3 x/ 11 1 l ( a ) ,  (b) 

tD / tP  P 4 2 / n n m  - 1 4 J a m d /  3 v' 8 8(a),  (b) 
1 4 / m m m  - P 4 /  m m m  

o P a / o D a  l m m m  - P m m m / P n n n  - Fddd  3 v' 16 16(a), (b) 
o D b / o P b  C m m a  - l m m a / F m m m  - C m m m  3 v' 14 14( a ), (b) 

mPD C 1 2 / m i - C l 2 / m l  ( c ' =  2c) 3 v' 19 19(a), (b) 
CLP/CLP~ P 4 2 / m c m  - P 4 2 / m m c  (t,) 3 x/ 3 3(a) 

( 'LP  P 4 2 / m c m  - P 4 2 / m m c  (v) 3 v' 9 9(a) ,  (b) 
oC LP ' /oC LP C m m m  - P m m m / P c c m  - Cccm 3 v / 15 15(a), (b) 

mCLP P I 2 / m l - P l 2 / m l  ( c '=  2c) 3 x/ 18 18(a), (b) 
m P C L P / m l ) C L P  C l 2 / m  I - P l 2 / m l /  3 v / 20 20(a),  ( b ) / ( c )  

P i 2 / c l - C l 2 / c l  ( a ' = 2 a ,  b ' = 2 b )  

i -WP/Stessman l m 3 m /  4 v"/x 2 2(a),  (b) 
VAL/VAL:I: ( ' m m a  - C m m a  ( c ' =  2c) 5 v' 7 7(a) 
VAL/VAL ( ' m m a  - ( ' m m a  ( c '=  2c) 5 v" 17 17(a), (b), (c) 

H ' /H / P 6 ~ / m m c -  P 6 m 2  3 x /v '  12 12(a), (b) 
hC LP/hCLP~ 3 x 4 4(a ) 

hCLP 3 x 13 13(a), (b) 
h l l / h l l '  4 x 5 5(a),  (b) 
h l2 /hI2  9 x l0 10(a), (b) 

p C L P / p C L P  5 x 6 6(a) ,  (b) 

* S / S  denotes cases where the surface is self-adjoint up to reorientation. A single entry S denotes a self-adjoint family. 
t This refers to the genus per lattice fundamental region for 1PMS. In general (including noncrystallographic surfaces), 

Riemann surface describing the surface. This is equal to ( I + I.c.m.{b, + l}). 
~- The branch-point  distribution exhibits higher symmetry than that of  the next entry. 

the genus listed is that of the 

surfaces (such as that in Fig. 2b) do not appear  where 
the distortions result in an irregular branch-point  
distribution. In these cases only the most highly sym- 
metric members  of the family  are ' regular ' ;  the generic 
surface resides in the irregular class. 

In the following subsection we discuss in detail the 
surfaces given in the figures - ident i fying those 
already known in the literature and analysing the new 
examples  discovered here. Recall that the number ing  
of the figures follows the grouping of the possible 
branch-point  sets listed in Table I2. In this way the 
procedure by which the surfaces are derived (and 
parametr ized)  is most clearly illustrated. The nature 
of the Weierstrass representat ion dictates that any 
systematic construction algori thm for IPMS be based 
upon considerat ions of the Gauss  map. From this 
viewpoint  the translat ional  order (i.e. Eucl idean 
tessellation) of  an IPMS leads to orientat ional  order 
in the Gauss  map (i.e. spherical  tessellation). As the 
latter is a necessary condi t ion for the former - but 
not sufficient - our method ensures or ientat ional ly 
ordered minimal  surfaces, a l though it cannot guaran- 
tee the existence of a ' true'  IPMS for each case. Thus 
while min imal  surfaces with compact  Fliichenstiicke 
may be conveniently subdivided into three categories 
- true IPMS (free from self-intersections),  IPMS 
possessing a finite number  of self-intersections per 
t ranslat ional  unit cell, and noncrysta l lographic  sur- 
faces (lacking a t ranslat ional  unit) - the algori thm 
makes no distinction between these types. While 

appl icat ion of the first surface category to structural 
description is well established,  the second category 
is also relevant and arises natural ly in model l ing 
equipotent ial  surfaces in charged arrays (for which 
self-intersections may occur naturally).  For this rea- 
son all of  the examples  of these two types generated 
from the Schwarz tilings have been retained in the 
figures. We have also included one example  of the 
third type arising from these solutions (i.e. orienta- 
tional order only) - a 'quasi-crystal l ine '  analogue of 
the more famil iar  true IPMS. 

As a consequence of our listing of surfaces via their 
branch-point  distributions, the sequencing of the 
figures does not lead to a grouping of surfaces with 
their lower-symmetry distortions. The full set of  rela- 
tions connecting the various surface families is quite 
intricate; the relations are expla ined below. The most 
important  crystal lographic data and relations result- 
ing from this study are summarized  in Table 2. 

The scope of this study is l imited to the 0 = 0 and 
0 = 7r/2 surfaces in each Bonnet family. This is again 
a manifes ta t ion of our approach,  since the Gauss  map  
is invariant  under  this t ransformat ion and thus pro- 
vides no direct insight into the possible existence of 
intermediate  associate IPMS. Note though that, for 
the regular class of IPMS, the parameter  range may 
be reduced to 0 < 0 < 27r/s without loss of  generali ty 
since the s branches of the Weierstrass functional  
form (I14) or ( l l5 )  are defined by the factors 
exp (i~bp). 



582 PARAMETRIZATION OF TRIPLY PERIODIC MINIMAL SURFACES. II 

Description of the IPMS families 

Fig. l (b)  gives the D surface and adjoint P surface 
of cubic symmetry discovered last century by Schwarz 
(1890). Stretching of the bounding cell in the vertical 
direction yields the tetragonal surface family pair 
tD(=-T) and tP, illustrated in Fig. 8(b) and analysed 
previously by Schoen (1970) and also by Lidin & 
Hyde (1987) and Lidin (1988). A further distortion 
of the tetragonal cell in either of the two perpen- 
dicular directions results in the two-parameter surface 

3 

1 

(a) 

Fig. 6. The self-adjoint pCLP surface. 

(a) 

Fig. 7. The special case of the VAL surface (see Fig. 17). 

C 

a 
a 

(b) 

families oDa and oPa of Fig. 16(b), which are thus 
orthorhombic distortions of the original cubic sur- 
faces (Fischer & Koch, 1989). Note that the corre- 
sponding distribution in Fig. 16(a) is the sole member 
of the Schwarz triangle solutions that possesses 
branch points within the triangle interiors. A circuit 
enclosing a single branch point of'first order must 

/ 

c 

a 
(b) 

(a) 

Fig. 9. The self-adjoint CLP family. 

,~'x "', < , 

) ' 

(a) 

(b) 

Fig. 10. The self-adjoint hi2 surface. 
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/ X p&,,\\~,~.\\\\\\\~" 
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1 1 a 

(b) 

Fig. 8. The tD and tP surfaces. Fig. 11. The self-adjoint rPD family. 
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wind around twice on the pair of sheets of the 
Riemann surface pinned there. Accordingly in this 
case the continuous subregion of the Riemann surface 
representing the Fliichenstiick image is the pair of 
superposed copies of the first octant pinned at the 
interior branch point (denoted by the double shading 
and labelling in Fig. 16a). 

A second pair of orthorhombic derivative families, 
oDb and oPb (displayed in Fig. 14b) exists, owing 
to the two distinct ways in which the tD and tP 
surfaces may be bounded by a parallelepiped unit 
(Fischer & Koch, 1989). On rhombohedral distortion 
of this pair of cubic surfaces the resulting family is 
self-adjoint, that is, D and P define the same one- 

1 
1 1 r "  

~ c 

1 

(b) 

(a) 

Fig. 12. The H' and H surfaces. 

parameter rhombohedral family, denoted rPD, given 
in Fig. l l (b )  (Fischer & Koch, 1989). In all of these 
cases the Riemann surface is double sheeted so s --2 
and hence the genus g = 3. 

Fig. 2(a) represents the only other possible regular 
branch-point distribution arising from the Schwarz 
case 4 tessellation, yielding a three-sheeted Riemann 
surface. This gives rise to the cubic I-WP surface, 
having genus 4, and the adjoint Stessman surface, 
which possesses self-intersections, illustrated in Fig. 
2(b) (Schoen, 1970; Lidin, Hyde & Ninham, 1990). 
As opposed to the situation for the D and P surfaces, 
all reduced symmetry distortions of the I-WP surface 
lie outside the regular class of IPMS. This is apparent 
from Fig. 2(a): any spherical geodesic polygon gener- 
ated by repeated reflection of the cubic I-WP polygon 
and bounded only by edges of a reduced-symmetry 
Schwarz tessellation produces an irregular distribu- 
tion of the branch points assigned to it. 

Fig. 9(b) is a general Fliichenstiick of the (one- 
parameter) tetragonal CLP family also discovered by 
Schwarz (1890). The family is imaged to itself under 
the adjoint transformation. The special case for which 
the equatorial branch points are evenly spaced corre- 
sponds to the fixed point of this transformation (illus- 
trated in Fig. 3a). This CLP surface is the only one 
that is strictly self-adjoint. 

]•j i I 

p 

(a) 

c 1 

(b) 
(a) 

c 

I 

1 

a 

(b) 

Fig. 13. The self-adjoint hCLP family. Fig. 15. The oCLP' and oCLP surfaces. 
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1 C 

(a) 

Fig. 14. The oDb and oPb surfaces. 
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Fig. 16. The oPa and oDa surfaces. 
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Stretching of the bounding unit in either of the two 
horizontal directions breaks the symmetry of the 
branch-point distribution with respect to interchange 
of images of plane lines of curvature and linear 
asymptotes, displayed in Fig. 15(a). This reduction 
in symmetry introduces the distinction between the 
two-parameter families defining the general ortho- 
rhombic CLP surface and its adjoint (denoted oCLP' 
and oCLP respectively), given in Fig. 15(b). 
Equivalently this distinction is evident from the two 
choices of parallelepiped unit bounding the 
tetragonal CLP surface. Again the double-sheeted 
Riemann surface implies a genus of 3 for these 
families. 

The previously discovered IPMS remaining in this 
regular-class list are the genus 3 hexagonal surfaces 
(Lidin & Larsson, 1990). The Fliichenstiick of the 
one-parameter (hexagonal) hCLP family is shown in 
Fig. 13(b). By analogy with the tetragonal CLP case, 
the adjoint surface family replicates the original hCLP 
family, with the special member having an equally 
spaced branch-point distribution around the unit 
circle, displayed in Fig. 4(a), being precisely self- 
adjoint (up to reorientation). However, in contrast to 
the tetragonal case, hexagonal symmetry dictates that 

,.< 
I 

3 

C 

(a) 
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/ 

/ ~ , ~  
• ~ ' ~ ,  
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"1 / i 'xk' 
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(c) 

Fig. 17. The self-adjoint VAL surface. The labyrinth networks 
defined by this IPMS are illustrated in (c). 

the hCLP family gives rise to self-intersections on 
repeated rotation. Similarly, the hexagonal surface 
family (denoted H') illustrated by the solid-line circuit 
in Fig. 12(b) produces self-intersections on rotation. 
This is not the case though for the adjoint-surface 
family, with general Fliichenstiicke given by the 
broken-line circuit, which corresponds to the 
(hexagonal) H surface of Schwarz. 

Of the other five regular branch-point distributions, 
which reduce to four since Fig. 7(a) is a special case 
of Fig. 17(a), one represents an intersection-free 
IPMS, two give IPMS with self-intersections while 
the remaining case possesses a noncrystallographic 
Fliichenstiick. 

We now analyse these four new cases in detail. The 
branch-point distribution of Fig. 17(a) gives the one- 
parameter surface family with generic Fliichenstiick 
illustrated in Fig. 17(b). As the Riemann surface is 
four-sheeted, each member of the family is exactly 
self-adjoint (up to reorientation). On repeated reflec- 
tion and rotation this Fliichenstiick generates an inter- 
section-free IPMS of genus 5. We call this surface 
the V-shaped alternate layers (VAL) surface. The 
labyrinth networks defined by this IPMS consist of 
parallel (horizontal) layers of zigzag tunnels (alter- 
nately V-up and V-down), with alternate layers joined 
by a set of (vertical) straight tunnels running through 
the surface, as well as a set of oblique zigzag tunnels 
(Fig. 17c). Note that the branch-point distribution is 
invariant under the transformation to ~ -1/to, that is, 
bl = b6 = 1 and the third-order branch points have the 
property {-1/to;}~=2={toi}~=2, hence the symmetry 
condition (23) is satisfied here for ~o =0. Further, 
the supplementary constraint (24) implies ~0= 
(Tr /3) (3-m)  where m = 0 ,  1, 2, 3, thus ~ = 0  is a 
solution, corresponding to rn = 3. So in addition to 
the plane lines of curvature and linear asymptotes, 
the surface possesses a twofold rotation axis parallel 
to the y axis. This axis is hence parallel to, and lying 
midway between, the horizontal linear-asymptote 
pair in Fig. 17(b), and intersects the surface at the 
point with normal vector lying along this line, imaged 
at to = i. The fact that the surface defines a one- 
parameter family, as opposed to the general two- 
parameter orthorhombic surface cases discussed 
above, implies that only two dimensions of the bound- 
ing parallelepiped unit may be specified arbitrarily. 
This is apparent from Fig. 17(b) since the regularity 
criterion demands that the surface-normal vectors at 
the first-order fiat points be vertical. Thus the generic 
orthorhombic VAL surface, for which this constraint 
is relaxed, lies outside the regular class and will be 
parametrized in a forthcoming study (Fogden, 1992). 
Fig. 7(a) represents the special case, possessing no 
additional symmetries, in which all edge lengths are 
coupled by the extra requirement that the normal 
vectors of the four third-order fiat points are mutually 
perpendicular. 
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The new cases of Figs. 5 and 10 both produce 
self-intersecting hexagonal IPMS, denoted hi1 and 
hi2. Since the corresponding Riemann surfaces are 
three- and eight-sheeted, the genera of this pair of 
surfaces are four and nine, respectively (although the 
interpretation of genus in terms of the labyrinth 
networks is not so clear for self-intersecting IPMS). 
Note that in both cases the branch points reside on 
vertices of the Schwarz tessellation, so there are no 
degrees of freedom present in the resulting surfaces. 
In these cases the vertical edge length ofthe bounding 
hexagonal prism is coupled to the equilateral triangle 
dimension. Thus, as for the VAL surface, the generic 
hexagonal h l l  and hi2 surfaces are 'irregular'. 

The distribution of Fig. 6(a) gives the Fliichenstiick 
illustrated in Fig. 6(b), which is exactly self-adjoint 
since the Riemann surface is four-sheeted, and rep- 
resents the pentagonal analogue of the exactly self- 
adjoint special cases of the (tetragonal) CLP and 
(hexagonal) hCLP surfaces corresponding to Figs. 
3(a) and 4(a). This surface is termed the pCLP sur- 
face. The general one-parameter pentagonal family, 
resulting from an arbitrary stretching of the bounding 
prism in the vertical direction, and analogous to the 
tetragonal and hexagonal families of Figs. 9(b) and 
13(b), yields an irregular distribution of first-order 
branch points around the unit circle and thus again 
resides outside the regular class [and will be 
addressed in a forthcoming study (Fogden, 1992)]. 
While the unit sphere admits fivefold symmetry, this 
is not the case for the Euclidean space groups, thus 
the pentagonal CLP surface is noncrystallographic. 
Hence in this case no IPMS exists; continued reflec- 
tion and rotation about the bounding mirror planes 
and twofold axes will produce self-intersections of 
arbitrarily high density in space, despite the fact that 
the corresponding Gauss-map image reproduces 
identical superpositions of the original Riemann sur- 
face. In the sense that this surface possesses normal- 
vector periodicity in the absence of any real-space 
periodicity (i.e. orientational order alone), it may 
represent a structure of physical interest and has been 
retained here. 

There are other branch-point distributions derived 
from Table 12 that also satisfy the closure criterion 
on the Riemann surface but give rise to noncrystallo- 
graphic minimal surfaces, the Fliichenstiicke of which 
are not illustrated here. In each case the distribution 
is symmetry-related by the composition of reflection 
in the unit circle and the internal symmetry axis 
arg to = "n'/2n of the Schwarz case 1 tile. In particular, 
the n = 4  solution {~,{1},q~} of Table I2 yields 
the self-adjoint one-parameter family of catenoids 
bounded by coaxial square frames rotated by zr/4 
relative to each other. 

Similarly the n = 2 solution { q~, { 1, 1 }, ~} generates 
a Fliichenstiick and adjoint Fffichenstiick defining a 
pair of two-parameter surface families that are non- 

crystallographic generalizations of the one-parameter 
tD and tP families of Fig. 8(b). The new Fliichenstiick 
(together with its adjoint) is derived via double rota- 
tion (respectively reflection) of the tD (respectively 
tP) Fliichenstiick such that the composite symmetry 
of twofold rotation about the y axis followed by 
clockwise rotation of ~r/2 about the z axis is retained 
in the absence of the c-edge twofold axis (respectively 
c-face mirror plane). In particular, the adjoint 
Fliichenstiick gives the t'amily of catenoids bounded 
by coaxial rectangles rotated by 7r/2 relative to each 
other. Just as the two distinct possible choices of 
parallelepiped bounding unit for the tD and tP sur- 
faces yield two distinct ortltorhombic derivative 
families in each case, there exists a second pair of 
noncrystallographic two-parameter derivative surface 
families possessing identical symmetries, generated 
by the n = 2 solution {qb, qb, {1}}. [Illustrations of the 
Fl~ichenstiicke for all three cases are given elsewhere 
(Fogden, 1991).] Note that, although these two pairs 
of surfaces are generically noncrystallographic, there 
is a countable infinity of special cases in which a 
translational unit containing only a finite number of 
surface self-intersections exists, corresponding to 
rational values of the rectangle edge-length ratio b~ a. 

3. Schwarz derivative tessellations 

The above analysis exhausts 'regular' I PMS generated 
by tessellations of the sphere by Schwarz triangles. 
However, regular IPMS of lower symmetry occur that 
are inaccessible from these cases (for example, mono- 
clinic surfaces). The complete set of such IPMS is 
obtained by extending the basis to all derivative tilings 
of those Schwarz cases that are consistent with the 
'regularity' criterion, namely cases 1 (with polar angle 
7r/n, n >- 2), 2, 4 and 6 (Fogden & Hyde, 1992). The 
admission of derivative tilings only requires 
modification of the tessellation-counting arguments 
that lead to (I37) and yield the solutions listed in 
Table I2. The analysis of the distribution of images 
of plane lines of curvature and linear asymptotes on 
the Riemann surface and the various rotational- 
symmetry criteria are only specific to the regular class 
and apply to any underlying tiling. 

( a ) Lunar tessellations 

In particular, consider a general member of the 
Schwarz case 1 family with polar angle 7r/n, n-> 2. 
Its two basic derivative tilings are the Schwarz case 
1 with the polar angle 27r/n, obtained by deleting 
alternate rays, and the lunar tessellation with angle 
7r/n via omission of the unit circle. For the former 
case the regularity criterion requires that n be even. 
Thus the first derivative type reproduces the original 
Schwarz case 1 family already exhausted above, with 
the addition now of the quadrant tiling n = 2 for which 
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the polar angle is 7r. However, this quadrant tiling is 
equivalent, on reorientation, to the member n = 2 of 
the latter derivative type. So, without loss of general- 
ity, the Schwarz case 1 derivative family is taken to 
be the lunar tessellations with angle 7r/n, n -> 1. 

Let {bT}j=12 , {b~,}kN='l and {b~'}~"l denote the orders 
of the branch points residing at the two polar vertices 
and on the edges and face, respectively, of a single 
lunar tile. The constraint (I10) on the complete distri- 
bution of branch points created by symmetry oper- 
ations acting on the single lunar tile gives, on trivial 
modification of (I37), the condition 

N' b~, N,' ,, 4 

= b j+ l  = b~,+l = +1 n 

for the possible numbers and orders of branch points. 
For the degenerate hemispherical case n = 1 there are 
no polar vertices and hence the first term is absent 
or, equivalently, is subsumed into the second term 
from the edge contributions. 

Equation (25) possesses branch-point-set solutions 
{{bj}j=l, {b~,}k/V~_i,2 {b~'}~"l} for each integer n in the 
range 1 -< n <- 8. A decrease in the integer n, and hence 
the symmetry of the distribution, relaxes the con- 
straints on the permissible range of branch-point 
orders and accordingly the number of such solutions 
increases in general. The solutions of (I37) for the 
Schwarz case ! tessellation listed in Table I2 are 
recovered trivially here as the special cases in which 
the distribution is symmetry-related across the unit 
circle. Hence the solutions of (25) are naturally 
divided into the reduced-symmetry distributions 
derived from these Schwarz case 1 solutions and those 
distributions that possess no higher-symmetry 
analogues. 

In this case too each branch-point set generates a 
number of surface families corresponding to the dis- 
tinct assignments of branch points and symmetry 
operations to the pair of lune edges. The two 
possibilities for branch-point propagation are reflec- 
tion over both edges or over one edge together with 
composition of reflection in the unit circle and the 
other edge. As noted previously, the latter possibility 
is only permitted by regularity if n is even, for which 
it is then equivalent to the composite symmetry oper- 
ation of Schwarz case ] with polar angle 2rr/n. As 
these have already been treated above, composite 
symmetry need only be addressed in the lunar case 
n = 2 possessing no Schwarz-case analogue. 

( b ) Special case: two-sheeted Riemann surfaces 

The complete set of solutions of (25) is too large 
to permit detailed consideration in this study. Analy- 
sis is limited here to those solutions consisting of 
(eight) order-one branch points. Each of these solu- 
tions is a reduced symmetry generalization of a 
Schwarz case 1 branch-point set listed in Table I2. 

Conversely, the solutions include all generalizations 
of IPMS discussed in the preceding section that have 
Fliichenstiicke containing eight order-one branch 
points, that reside in the regular class (that is, possess 
a double-sheeted Riemann surface) and that are con- 
sistent with lunar tessellations. Consequently, the 
closure criterion is automatically satisfied for these 
solutions as a reduction in symmetry preserves this 
property. For integers in the range 2 < n -< 8, the allo- 
cations of order-one branch points to the lunar tiles, 
in accordance with (25), recovers the Schwarz case 
1 solutions for each n value since the distribution is 
necessarily symmetric with respect to an origin- 
centred circle (which may be assumed, without loss 
of generality, to be the unit circle). Hence within the 
regular class the lunar tessellation generalizations are 
restricted here to the cases n = 2 and n = 1. 

To determine all corresponding Weierstrass func- 
tions and classify the resulting surface symmetries, 
consider the generic branch-point distributions for 
these two cases. The n =2  case is the quadrant 
tessellation, defined by the great-circle pair with 
images the real and imaginary axes or, equivalently 
on reorientation, the real axis and the unit circle, in 
the complex plane. If both of the pair of lunar edges 
are reflection axes of the distribution then the set of 
images of a general point to is the group 

(,~, -o~) = {to, o~, - to ,  -o~} 

[with to e R (respectively iR) giving the degenerate- 
edge-case subgroup {A, -A} where A c R (respec- 
tively iR)] or, with respect to the alternative 
orientation, 

(o~, 1/o~)= {to, o~, 1/to, 1/o~} 

[with edge cases {A, 1/A} if to ~ R and 
{exp( iO) ,exp( - iO)}  if Itol = 1]. Equations (6)-(10) 
imply that the segments of the real axis connecting 
neighbouring first-order branch points can be taken 
here as the images of alternate plane lines of curvature 
and linear asymptotes without loss of generality. 
Then, with respect to the first orientation, the same 
is true of the imaginary axis provided the tessellation 
vertices (at the origin and infinity) are unbranched 
points of the Riemann surface. This is also true of 
the unit circle in the second orientation if condition 
(19) is satisfied, that is, if the eight first-order branch 
points have the property 

8 

H to, = 1. (26) 
i = i  

By symmetry the branch points occur in pairs 
{toi, 1/toi}, with the exception of the doubly degener- 
ate case in which toi = +1. Hence (26) is trivially 
satisfied unless the two tessellation vertices are branch 
points of the Riemann surface. This confirms the fact 
that the surface properties are identical in the two 
orientations. 
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Now consider the other possibility for the n = 2 
lunar case, in which the symmetry operation of one 
of the edggs is changed from reflection to the com- 
posite operation combining this with reflection in the 
internal-symmetry axis of the lune. For the first 
orientation, reflection in the real axis and composition 
of reflection in the imaginary axis and in the unit 
circle generates the group 

(o%- i / to )=  {to, o%-1 / to , -  1/o3}, 

which reduces to the antipodal pair {A , -1 /A}  if 
to e R. In the second orientation, reflection in the unit 
circle and composite reflection in the real and 
imaginary axes gives 

(1 /o3, - to)= {to, 1/o%-to,-1/o3} ,  

which degenerates to the antipodal pair 
{exp (iO), - exp  (i0)} if ]tol = 1. In the former the real 
axis is the image of a family of coplanar lines of 
curvature and/or normal asymptotic lines (meeting 
at right angles at first-order flat points) precisely as 
above, while the composite symmetry of the distribu- 
tion corresponds to an additional twofold axis per- 
pendicular to the surface and parallel to the linear 
asymptotes, provided q~ = 0 is a solution of (24), for 
b = 0. This reproduces the above condition (26) here. 
In the latter orientation this condition ensures that 
the unit circle is the image of such a family of plane 
lines of curvature and linear asymptotes as before, 
with the composite symmetry now automatically 
imposing the additional twofold axis [since q~'=-Jr 
satisfies (13) for b = 0  (and Aq~,=0)]. Here too the 
surface properties are identical with respect to the 
two orientations. 

In summary then, we have two possibilities for the 
n =2  lunar case. Firstly, a perpendicular pair of 
branch-point reflection axes in the tiling produces a 
perpendicular pair of families of plane lines of cur- 
vature and/or  linear asymptotes in the surface - pro- 
vided the two tessellation vertices are unbranched 
points. Secondly, a single reflection axis combined 
with a composite reflection operation in the tiling 
yields a single such family, together with additional 
parallel twofold rotational symmetry, provided (26) 
is satisfied. 

In the n = 1 lunar case there exists only the possibil- 
ity of a single reflection axis of the distribution. Tak- 
ing this to be the unit circle, a general point to 
possesses the image pair 

(1/<~) = {to, 1/o3} 

and the symmetry generates a single family of co- 
planar lines of curvature and/or  normal asymptotic 
lines if the distribution obeys the constraint (26). 

As opposed to the n = 2 situation of perpendicular 
reflection axes, this constraint is not satisfied identi- 
cally for a general n = 1 distribution owing to the lack 
of second axis. So, as with the n =2  situation of 

composite reflection symmetry, (26) is nontrivial and 
is equivalent to the single real equation 

8 

Y~ arg to~ = 0 (mod 2zr) (27) 
i = 1  

since unit-circle symmetry implies that the modulus 
of the product in (26) is unity. This constraint results 
from the fact that the symmetry operations to ~ 1/o5 
and to ~ - t o  generating these two cases only specify 
{arg toi}8=~ up to an additive constant. 

4. Regular-class solutions in this special case 

The complete set of distinct families of eight first- 
order branch points generated by the lunar tessella- 
tions comprise fourteen distributions. There are three 
n = 2 case distributions possessing a single reflection 
axis together with a composite reflection symmetry, 
illustrated in Figs. 18(a)-20(a) (with respect to the 
second orientation). The Weierstrass functions for 
each are the reciprocal square-rooted polynomials of 
degree eight obtained by inserting the set of branch- 
point sites {toi}8=~ into the form (I14). These are given, 
in terms of the unifying polynomial form consistent 
with this symmetry, in the correspondingly numbered 
rows 18-20 of Table 1. The n = 2 lunar tessellation 
also yields six distributions having a pair of reflection 
axes, while there are five distinct n = 1 solution 
families (possessing a single reflection axis only). 
Since these eleven cases give rise to generically non- 
crystallographic minimal surfaces, the details of them 
are not presented here [but may be found in an earlier 
study (Fogden, 1991)]. 

Again, the shaded region in Figs. 18(a)-20(a) rep- 
resents the projected Gauss-map image of the 
Fl~ichenstiick, tiling the double-sheeted Riemann sur- 
face of the Weierstrass function. The plane lines of 
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Fig. 18. The self-adjoint mCLP family. 
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Fig. 19. The self-adjoint mPD family. 
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curvature and /or  linear asymptotes specifying each 
Fliichenstiick with respect to its generic bounding unit 
are illustrated in Figs. 18(b)-20(b). In the first two 
cases the adjoint-surface family replicates that of the 
original surface. The adjoint Fliichenstiick corre- 
sponding to Fig. 20(b) is, for clarity, illustrated sepa- 
rately in Fig. 20(c). 

The Fl~ichenstiick image in Fig. 18(a) comprises 
the interior of the unit circle (i.e. hemisphere) on a 
single sheet of the Riemann surface, as it contains no 
branch points within. Reconstruction of the Fliichen- 
stiick in Fig. 18(b) is straightforward since it is 
bounded by a circuit of plane lines of curvature and 
linear asymptotes (as was the case for each of the 
Schwarz-tiling examples discussed above). However, 
the situation is more complicated for Figs. 19 and 20. 
In Fig. 19(a), the image consists of two superposed 
copies of the unit-circle interior pinned together at 
the branch points. On winding once around a pair of 
branch points of first order, we form a (continuous) 
closed loop on the Riemann surface. Thus, in contrast 
to the situation in Fig. 16(a), the boundary of the 
Fliichenstiick image here comprises two disjoint cir- 
cuits, corresponding to the two disjoint bounding- 
curve segments in Fig. 19(b). The endpoints of each 
curve segment are thus identical up to a lattice trans- 
lation (to which the Weierstrass representation is 
invariant). The two halves of the Fliichenstiick are 
related by the twofold axis perpendicular to the sur- 
face. The Fliichenstiicke of Figs. 20(b) and 20(c) may 
be similarly derived from Fig. 20(a). 

These Fliichenstiicke generate three-parameter 
families of surfaces, possessing a set of coplanar lines 
of curvature and /or  normal asymptotic lines together 
with a parallel internal twofold axis, by virtue of the 
additional constraint (27) on the distributions of Figs. 
18( a )-20( a ). Hence they represent monoclinic distor- 
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Fig. 20. The mPCLP and mDCLP surfaces [given separately in 
(b) and (c), respectively]. 

tions of the two-parameter orthorhombic families 
(given by the distributions of eight first-order branch 
points symmetric with respect to reflection in the three 
edges of the Schwarz case 1, n = 2 tessellation). Com- 
pared to the related orthorhombic IPMS, these mono- 
clinic IPMS lack a perpendicular intersecting pair of 
plane lines of curvature and /o r  linear asymptotes but 
retain the twofold axis produced on composition. 

In particular, for the oDb and oPb Fliichenstiicke, 
loss of the c-edge linear asymptote and the c-face 
plane line of curvature of Fig. 14(b), respectively, 
together with the corresponding curves along the (a 
or) b edge and face in both cases, gives the monoclinic 
surface element of Fig. 19(b). This distortion removes 
the distinction between the orthorhombic surface and 
its adjoint, hence the resulting three-parameter family 
(denoted here the mPD surface) is self-adjoint. 

Alternatively, loss of both the a- and b-edge (and 
face) symmetries in this pair, or equivalently the a- 
and b-edge (respectively face) symmetries of the oDa 
(respectively oPa) Fliichenstiick of Fig. 16(b), yields 
a distinct monoclinic derivative surface pair illus- 
trated in Figs. 20(c) and (b). This pair of monoclinic 
families is likewise obtained from the orthorhom- 
bic CLP pair, of Fig. 15(b), by removing the 
(a- or) b-edge (respectively face) symmetry of the 
oCLP surface (respectively oCLP' surface) together 
with those of the c edge and face in both cases. 
Consequently, these surfaces are denoted mDCLP 
and mPCLP respectively. Further, loss of the a- and 
b-edge (respectively face) symmetries in these two 
cases produces the self-adjoint monoclinic CLP 
family ( 'mCLP' surfaces) in Fig. 18(b). 

To summarize these relations, recall that the D, P 
and CLP surfaces all possess a single one-parameter 
tetragonal family, each giving rise to a pair of two- 
parameter orthorhombic families. The monoclinic 
distortion now produces four three-parameter 
families. Specifically, the D pair merges with the 
oCLP surface to yield the common mDCLP surface 
(with the adjoint transformation of this operation 
supplying the mPCLP surface from the P pair and 
the oCLP' surface). Further, the two adjoint pairs 
oCLP-oCLP'  and oDb-oPb produce their own 
self-adjoint monoclinic relatives mCLP and mPD, 
respectively. 

For the other eleven distributions of eight branch 
points (of first order) related to the lunar tessellations, 
the number of degrees of freedom dictated by the 
symmetry of the distribution exceeds that of the cor- 
responding crystallographic system in R 3. In this 
sense these cases deviate from all those considered 
above. Although the symmetry elements defining the 
generic Fliichenstiicke produce noncrystallographic 
minimal surfaces, the imposition of constraints on 
the distribution (reducing the number of degrees of 
freedom to that compatible with the crystal unit) may 
give rise to IPMS subclasses. 
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As an example, consider the above-mentioned six 
distributions related by reflection across both edges 
of the n -- 2 lunar tiling. The associated Fffichenstiicke 
represent four-parameter surface families possessing 
perpendicular pairs of coplanar lines of curvature 
and /o r  normal asymptotic lines and are reduced- 
symmetry generalizations of Schwarz case 1 surfaces. 
If the four independent dimensions characterizing 
the Fffichenstiick with respect to its bounding cell may 
be constrained such that the symmetry elements are 
(nontrivially) locked into crystallographic positions 
then a new orthorhombic IPMS results. In particular, 
for one of these six cases this procedure yields an 
orthorhombic IPMS family encompassing both the 
oPb and H surfaces. 

The introduction of such additional constraints is 
again a manifestation of the fact that orientational 
order is not always sufficient to ensure translational 
order. These extra conditions are strictly global and 
necessarily involve contour integration of the generic 
Weierstrass functional form via the representation 
(I1). As they cannot be derived from consideration 
of the Gauss map alone, they lie outside the scope 
of the present study. However, we briefly illustrate 
their application in analysing the terminal stage in 
symmetry reduction of the D, P and CLP surfaces 
within the regular class - the triclinic distortions of 
the monoclinic Fliichenstiicke of Figs. 18(b), 19(b) 
and 20(b), (c). 

5. Triclinic IPMS 

We first reanalyse monoclinic symmetry to relate it 
to its triclinic counterpart. The Gauss-map symmetry 
to ~ 1/a5 (i.e. reflection in the unit circle) corresponds 
to a line of curvature in the xy plane (positive sign) 
and an asymptote along the z axis (negative sign) 
provided equation (I23) is satisfied for nt = n2=0,  
that is, 

( 1 / t o 4 ) l ~ ( 1 / a 5 )  = + R ( w ) .  (28) 

As noted above, this reduces on substitution of the 
functional form (I14) or (I15) to the constraint (19) 
for the positive root, with the sign of the right-hand 
side in turn reversed for the negative root. Similarly, 
the symmetry w--~ -w  (i.e. reflection in the origin) 
yields twofold perpendicular rotational symmetry 
about the point on the surface with normal vector 
parallel to the z axis provided q~'= 7r is a solution of 
(12), that is, 

R(- to )  = R(to), (29) 

which, again as stated previously, is satisfied identi- 
cally here. Composition of these two operations 
implies the symmetry to -~ - l / a5  of the Gauss map 
on reversal of the surface-normal-vector orientation 
(i.e. inversion in the origin). This generates an off- 
surface centre of inversion symmetry if q~" = 0 satisfies 

(16), i.e. 

( l / w 4 ) R ( - 1 / a 5 ) =  R(to),  (30) 

which again recovers the constraint (19). Hence off- 
surface inversion symmetry exists in the monoclinic 
case if the Weierstrass function satisfies at least the 
positive root of (28) or, equivalently, if the surface 
possesses at least plane lines of curvature. 

This confirms the geometrically obvious fact that 
the surfaces of Figs. 18(b), 19(b) and 20(b) display 
off-surface inversion about the intersection of the 
internal twofold axis with the mirror planes, that is, 
about the centres of the endface pair. This is not the 
case however for the adjoint Fliichenstiick of Fig. 
20(c) since it possesses linear asymptotes parallel to 
the additional twofold axis in the absence of any 
plane lines of curvature. In all cases each first-order 
branch point corresponds to an on-surface inversion 
centre as q~"'=0 satisfies (20) since exp ( i ~ r ) = - I  
here - a property common to all Weierstrass functions 
with double-sheeted Riemann surfaces. 

On triclinic distortion of a monoclinic IPMS the 
set of coplanar lines of curvature and /or  normal 
asymptotic lines are lost, together with the internal 
twofold axis, while any existing off-surface inversion 
centres produced on composition of these original 
symmetries are retained. Hence the triclinic IPMS 
differ from all others in this study in possessing Gauss 
maps devoid of any underlying tessellation structure. 
The branch-point distribution only has the symmetry 

8 {-1/a5i}8=~ ={w,}i=~, subject to the associated con- 
straint (19) for this on-surface inversion, reducing as 
noted above to the condition (26) or (27) here [which 
is common to both the positive and negative root of 
(28) by virtue of the two-sheeted Riemann surface]. 
Hence the generic triclinic regular-class Weierstrass 
functional form is 

( 4  ) - , / 2  
R( to )=  H ( w - t o , ) ( t o + l / 6 , )  " 

i = 1  

4 

H ( - w , / a 5 , ) = l ,  (31) 
i = 1  

or equivalently on expansion, 

R(o2) = amO2" " a m  = ( - - 1 ) m f f 8 - m ,  
m = O  

ao = as = 1. (32) 

The functional form (31) or (32) contains seven 
free real variables and thus gives rise to a seven- 
parameter noncrystallographic surface family. The 
most general triclinic unit only has five degrees of 
freedom (up to a uniform dilation) given by the 
variable edge-length ratios a / c  and b / c  and shear 
angles a, /3, 3,. Hence at least two real constraints 
must be imposed on the generic form to yield a 
triclinic IPMS family. These constraints derive from 
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the crystallographic requirements of triclinic sym- 
metry regarding the relative positions of the off- and 
on-surface inversion centres. With reference to the 
triclinic cell of Fig. 21, the distortions of the mCLP, 
mPD and mPCLP Fliichenstiicke [shown in Figs. 
18(b), 19(b) and 20(b)] possess off-surface inversion 
symmetry at the endface centres of this unit, denoted 
B~ and B2. These three cases then represent the three 
distinct possible allocations of the eight first-order 
branch points (on-surface inversion centres) to the 
remaining face-centre and edge-midpoint sites. 

The first such possibility positions branch points 
at the edge midpoint sites A1, A2, A3, A4, with the 
remaining four positions then specified by off-surface 
inversion to be the antipodal edge midpoints A'~, A~, 
A~, A~. Hence for the triclinic distortion of the mCLP 
Fliichenstiick of Fig. 18(b) the relative position vectors 
B~B2, A~A2 and A3A 4 of the off-surface centres and 
the branch-point pairs must be equal, 

AIA2 = A 3 A 4 :  BIB2. (33) 

The second possibility, corresponding to one half of 
the bounding unit of Fig. 19(b), again contains branch 
points at the edge midpoints A~, A2 (and the 
antipodal pair A'~, A~), and now a further pair at the 
face centres B3, B4 (with off-surface inversion images 
B~, B~ at the parallel face centres of the adjacent 
unit). In this distorted mPD Fliichenstiick the three 
relative position vectors BIB2, AIA2 and B~B4 mus t  
now be identical, 

AIA2 = B~B4 = BIB2. (34) 

The final possibility, derived from one quarter of the 
unit in Fig. 20(b), has branch points at the four face 
centres B3, B4, Bs,  B 6 (again with images B~, B~, 
B~, B~ occupying the corresponding sites of the 
adjoining cell). Hence for the distorted mPCLP 
Fliichenstiick (Fig. 20b) common to the P and CLP 
families, the triple BIB2, B~B4 and B~B 6 mus t  be equal, 

B~B4 = B~B6 = B,B2. (35) 

The description of these three cases is thus unified 
by the triclinic constraint that the relative position 
vector of the off-surface inversion centres coincides 
with those of two pairs of flat points. As the functional 
form (31) is symmetric with respect to the wi, the 
surface-normal-vector images of these two pairs may 
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A '  I 

a 

Fig. 21. A general triclinic unit cell. The symbols label edge mid- 
points and face centres that are possible points of inversion for 
the triclinic IPMS discussed in § 5. 

be assumed, without loss of generality, to be to~, to: 
and w3, to4. Substitution of the representation (I1) 
then gives 

Re/~2 [1 ,2 /(1 +to' - w  , 2) ,2 to ']R( to ' )  dto' 
I,. t O  I 

- I [1- to '2 ,  i ( l+to '2) ,2w']R(to ' )  dto' =0,  (36) 
o J  3 

supplying, in general, three real constraints on the 
branch-point distribution. 

Hence the triclinic 'regular' IPMS families possess- 
ing eight first-order fiat points with distinct normal 
vectors are generated by the Weierstrass function (31) 
or (32) subject to the constraints (36). If the system 
of three equations (36) is nondegenerate then the 
surfaces are accordingly reduced to four-parameter 
families, having one less degree of freedom than the 
general triclinic symmetry class. In this case these 
regular IPMS can only access a subset of the full 
triclinic space. This is plausible since the assumption 
of regularity is certainly a limitation (for example, 
all first-order branch points must be inversion 
centres). 

As the triclinic distortions of the mCLP, mPD and 
mPCLP surfaces are specified identically, with no 
underlying tessellation to distinguish symmetrically 
different branch-point configurations, they are 
effectively merged into one continuous IPMS family. 
The triclinic distortion of the fourth possible mono- 
clinic IPMS, the mDCLP surface, given by the adjoint 
Fliichenstiick in Fig. 20(c) (lacking any off-surface 
inversion symmetry), is simply derived from that of 
Fig. 20(b) on multiplication of the functional form 
by the complex constant i. Conversely, the monoclinic 
cases may be recovered as the trivial solutions of (36) 
on imposition of the additional symmetries to ~ 1/o3 
and co ~ -to. 

6. Concluding remarks 

This work was motivated by our lack of knowledge 
of bicontinuous forms. Although many IPMS have 
been found, to date there has been no systematic 
procedure for generating them. This work attempts 
to redress that imbalance: we have presented an 
algorithm for the enumeration (and parametrization) 
of all IPMS within the regular class. All such IPMS 
related to Schwarz triangle tilings have been given 
here. This listing is only incomplete in respect of the 
IPMS derived from lunar tilings (for which the 
analogous conditions have been detailed and some 
representative examples analysed). Completion of 
this task is straightforward, albeit tedious. The 
minimal surfaces described and parametrized in this 
paper are displayed in Table 2. In particular, six new 
intersection-free IPMS (the oCLP', VAL, mCLP, 
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mPD, mPCLP and mDCLP surfaces) have been 
determined. 

For IPMS in the regular class the explicit calcula- 
tion of surface coordinates, via numerical integration 
of the Weierstrass representation, is readily per- 
formed. As each of the s branches of the Weierstrass 
function only differs by a constant factor exp (i~p), 
the traversal of the Riemann surface induced in such 
a calculation is easily traced. Numerical generation 
of the Fliichenstiick is extremely useful in visualizing 
the lower-symmetry examples in which the plane lines 
of curvature and/or linear asymptotes do not define 
a boundary circuit. Even in higher-symmetry cases 
the computation is worthwhile since the inter- 
penetrating labyrinth networks partitioned by the 
IPMS are not always immediately apparent. 

The technique we have used also leads naturally 
to nonclassical minimal surfaces that are orienta- 
tionally ordered but lack translational symmetry. 
Whether these surfaces are physically relevant 
remains to be seen. However, the recent interest in 
quasicrystalline structures and orientational order 
warrants there inclusion here. We have looked for 
surfaces whose point-group symmetries are those of 
the icosahedron, since these are allowed symmetries 
on the sphere, however, no such minimal surface 
exists within the regular class. (Note that such an 
icosahedrai surface does exist as an irregular surface, 
of higher genus.) However, special positions on one 
of these new noncrystallographic surfaces, the pen- 
tagonal CLP surface, exhibits the same point-group 
symmetry as that of the so-called T-phases in rapidly 
quenched alloys (Bendersky, 1985). This symmetry 
has also been observed in a lyotropic liquid crystal 
(Fontell, 1991). 

Having concluded our study of the regular class of 
IPMS, the question of possible extension of the con- 
struction algorithm to all IPMS arises. The recogni- 

tion of this special class is a somewhat arbitrary one, 
introduced for the sake of simplicity of the Riemann- 
surface structure of the Weierstrass function, thus 
facilitating an exhaustive listing of all such possible 
surfaces. This listing serves a dual purpose - firstly, 
in unifying all previously discovered IPMS (e.g. D, 
P and CLP surfaces) within a systematic parametriz- 
ation scheme that permits generalization to reduced- 
symmetry families and isolating new IPMS such as 
the VAL surface illustrated in Fig. 17(b) and (c) and, 
secondly, in the converse statement that there exists 
no other IPMS in this class. However, the limitations 
of this class are clear, both from the existence of 
'irregular' IPMS, such as the Neovius [or C(P)] sur- 
face, and from the existence of 'regular' IPMS, such 
as the I-WP surface, which pass into the irregular 
class on crystallographic distortion. The construction 
framework of topological, geometrical and Riemann 
surface features established here permits a natural 
generalization of the above to the irregular class. This 
is addressed in a forthcoming study (Fogden, 1992). 
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Abstract 

The symmetry of reciprocity is reviewed in the context 
of relativistic quantum mechanics with the specific 
aim of relating to C, P and T invariances. From this 
investigation global time reversal is found to be a 

sufficient condition for reciprocity to hold in scatter- 
ing from a vector potential. The present proof is free 
from assumptions of small-angle scattering and from 
restrictions on z-dependent terms in the scattering 
equation, and by avoiding S-matrix theory is thought 
to be accessible to undergraduate teaching. 
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